

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher *Taylor & Francis*
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:
<http://www.informaworld.com/smpp/title~content=t713708471>

Approaches Toward Synthesizing Novel Extractant Systems: Polymeric Bifunctional Extractants with Synergistic Possibilities

S. D. Alexandratos^a; W. J. McDowell^b

^a Department Of Chemistry, University of Tennessee, Knoxville, Tennessee ^b Chemical Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

To cite this Article Alexandratos, S. D. and McDowell, W. J. (1983) 'Approaches Toward Synthesizing Novel Extractant Systems: Polymeric Bifunctional Extractants with Synergistic Possibilities', *Separation Science and Technology*, 18: 14, 1715 — 1730

To link to this Article: DOI: 10.1080/01496398308056123

URL: <http://dx.doi.org/10.1080/01496398308056123>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Approaches Toward Synthesizing Novel Extractant Systems: Polymeric Bifunctional Extractants with Synergistic Possibilities

S. D. ALEXANDRATOS

UNIVERSITY OF TENNESSEE
DEPARTMENT OF CHEMISTRY
KNOXVILLE, TENNESSEE 37996

W. J. McDOWELL

CHEMICAL TECHNOLOGY DIVISION
OAK RIDGE NATIONAL LABORATORY
OAK RIDGE, TENNESSEE 37830

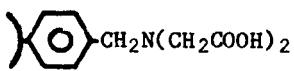
ABSTRACT

The synthesis of a monoarylphosphinic acid - diarylphosphine oxide extractant system supported on macroporous polystyrene beads is reported. The bifunctional resin was used in separate zinc and copper(II) ion extraction studies. Results with both metals show an excellent extent of extraction under low loading conditions and solution pH of 1-2; at equivalent metal:resin concentrations, the resin absorbs 50% of the metal in solution. Comparison with lower absorption values reported in the literature for similar systems suggests the possibility of a synergistic extraction due to cooperation between the acid and oxide moieties.

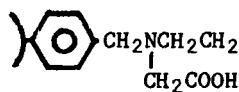
INTRODUCTION

Systems set up to extract metal ions from a water solution can consist of an organic solvent (diluent) in which is dissolved

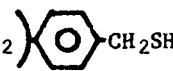
one or more extractants, of undiluted extractants, or of solid polymeric materials to which are attached functional groups. A great deal of attention has been and is being focused (1,2) on varying the functionality and structure of the extractant in the search for diluent-soluble reagents that will quantitatively remove a given metal ion from an aqueous solution at a rapid rate, will be specific for the given metal ion in the presence of other ions under easily adjusted conditions, and can be commercially produced. Less attention appears to have been given to increasing the versatility of solid polymeric extractants.


The advantages of utilizing liquid extractants are well known (3). They include the wide range of reagents available for practically all metal ions, the ease with which an industrial plant can be converted from recovering one metal to another by simply changing the extractant feed stream, and the ease with which the metal can be stripped from the extractant allowing for quantitative recovery. Perhaps most advantageous is the ease with which the extraction process can be controlled by changing the process variables: dissolving the extractant in different diluents, at different concentrations, or with additional solvating reagents.

Ligands usually utilized in liquid extractants can also be placed onto a polymeric backbone to yield a solid reagent which serves as both diluent and extractant. Such systems are well known in the form of resin "ion exchangers." The use of polymeric (or solid) extractants has its own set of advantages that include virtually total insolubility and nonentrainment in the aqueous phase and often a low rate of physical degradation. For these reasons, such solid polymeric extractants are often to be preferred where aqueous source solutions are very dilute, where large volumes of the aqueous phase must contact the extractant, and where losses from solubility and/or entrainment would be large. However, the solid extractants that are commercially

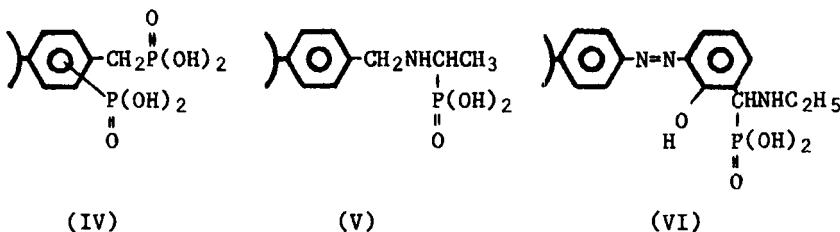

available tend to lack the versatility and selectivity available in liquid extractants, and in some cases they suffer problems of slow absorption and desorption. Most studies to date have dealt with the relatively few commercially available solid extractants (4), and applications are limited to a few processes. We shall address the problem of limited versatility of solid extractants as well as study the effect of the supporting structure on the functional group, by synthesizing new polymeric extractants and comparing their performances against their corresponding liquid analogues.

POLYMER-SUPPORTED EXTRACTANTS: BACKGROUND


The concept of using solid specialty extractants, though seemingly commercially neglected when compared with their liquid analogues, has some basis in experimental work (5). Iminodi-acetic acid resins have been synthesized as both phenolics (6) and as styrenics (7), and such solid extractants have been commercially available under the tradename Dowex Chelating Resin A-1 (8). Resin A-1 (structure I) can be prepared by suspension polymerization and is particularly effective in concentrating divalent ions (8). A derivative structure (II) has been found useful in separating transition metals from Group IIA metals (9). Polymercaptostyrene (III) and a polymeric quinolinol have also been synthesized (10,11).

(Polymer; I)

(II)



(III)

Given the early recognition afforded the phosphates and phosphonic acids as liquid extractants, it is not unexpected that methods for supporting these systems also received attention. A polymeric phosphate was prepared by the free radical polymeriza-

tion of diallyl allyl phosphonate (12). The capacity of the polymer for adsorbing Fe(III) ions from an aqueous FeCl_3 solution was only 0.2 meq/g; this low capacity was probably due to the high solvation energy of the water because adsorption from ketones and alcohol solutions raised the capacity to 1-3 meq/g. The suggestion that polymeric phosphine oxides might prove to be more effective extractants than the phosphonates based on the behavior of the homogeneous case (13) has been most recently the focus of studies by Saegusa and co-workers (14). They synthesized a polymeric phosphine oxide on a polystyrene support and found that the polymer adsorbed UO_2^{+2} quantitatively from 10^{-6} M aqueous solutions.

Polystyrene-supported phosphonic acids (IV) were synthesized by the reaction of PCl_3 on chloromethylated polystyrene beads (15). Phosphorylation occurs both on the aromatic ring and the chloromethyl moiety giving an acidic resin with a Na^+/H^+ exchange capacity of 8.0 meq/g. While resin IV displayed no unique selectivity, resins showing enhanced selectivity (16) for divalent transition metal cations were later synthesized from polystyrene (resins V, VI).

POLYMER-SUPPORTED EXTRACTANTS: PRESENT RESEARCH

The research (of which this paper is a first report) has as its goal the examination of solid resin-supported extractants in comparison with their functionally analogous liquid extractants,

with the hope of defining reagents that combine the flexibility of liquid systems with the insolubility of polymeric systems.

In carrying out our studies, we need to keep in mind two key criteria which polymeric reagents must meet in order to be considered for any industrial process: (1) the polymeric reagent must be economical and thus readily produced on a large scale requiring only minimal add-on to current production facilities, and (2) the polymer must display mechanical stability to usual pressure drops encountered and chemical stability to strong acids and bases used in extraction and regeneration. We are recognizing these criteria by placing our initial emphasis on polystyrene as the support material. By synthesizing the polystyrene via a suspension polymerization process, we at once endow the system with the possibility of maximum physical stability (spherical beads) with minimum pressure drop problems (≈ 1 mm bead diameter) utilizing a commercial process (17). Crosslinking the polymer chains with a difunctional monomer such as divinylbenzene (DVB) is necessary for mechanical stability. The greater the amount of crosslinking, the more resistant the bead to mechanical attrition. The tighter, though, that the polymer matrix becomes, the greater the possible decrease in exchange kinetics, leading to the choice of a range from 2% to 15% DVB, together with variation of the macroporosity (17).

Our initial focus is on supporting P=O compounds onto polystyrene: phosphinic acids for complexation through ion exchange and phosphine oxides for complexation through neutral coordination. With liquid extractants, the combination of various phosphorus acids and oxides has led to the observation of synergistic extraction (18) where the combined effect of the two is greater than the sum of the two individual extractants used alone (19). We have combined phosphinic acid and phosphine oxide groups onto one polymeric resin; our results, reported below, give the first indication of synergistic extraction in solid extractants.

EXPERIMENTALPolystyrene Synthesis

Synthesis of the polystyrene support in bead form via suspension polymerization followed a published procedure (17). The aqueous phase consisted of gelatin and poly(diallyldimethylammonium chloride) (Calgon Corp.) as suspension stabilizers while the organic phase consisted of styrene, variable levels of divinylbenzene, 1% benzoyl peroxide, and 50% 4-methyl-2-pentanol as pore-forming agent. The polymerization occurred over a period of ten hours at 80°C. The alcohol was removed by steam distillation and the polymer dried in a vacuum oven for twelve hours at 40°C. A -16 +20 mesh cut was used in the subsequent functionalization.

Functionalization

Synthesis of the polystyrene-supported phosphinic acid/phosphine oxide was achieved by swelling the beads in PCl_3 (Aldrich) for 2 hours at 25°C followed by the addition of 0.77 mole anhydrous AlCl_3 (Aldrich) per mole copolymer. The mixture was allowed to stir for 4 hours at 73°C with subsequent hydrolysis in water.

Characterization

The solids content of the functionalized beads was determined by draining the wet beads by aspirator for five minutes, weighing out a ten gram sample, then drying in an oven at 110°C for 12 hours. The weight ratio, dry to wet, reflects the weight of solid polymer per gram of wet resin employed.

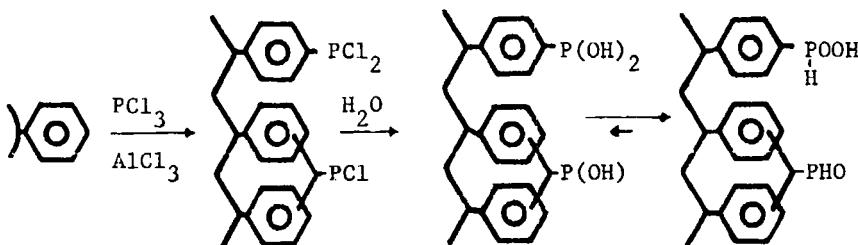
The cation exchange capacity (CEC) was determined by eluting the acid form of the resin with 4% NaNO_3 and titrating the acid with NaOH .

The amount of secondary phosphine oxide on the bead was quantified by iodometric titration (20): the beads were shaken

with an excess of 0.1 N I_2 in 2% KI for 16 hours and the iodine left was titrated with 0.1 N $Na_2S_2O_3$.

Zinc Ion Analysis

Each of ten vials contained a given zinc concentration in five milliliters of solution and 1 meq acid sites on the beads (0.48 g of the 2% DVB resin). An amount of zinc stock solution (2 N $Zn(NO_3)_2$ in 2 N $NaNO_3$) was used to give Zn:acid equivalent ratios of approximately 0.05, 0.10, 0.20, 0.40, 0.80, 1.00, 1.20, 1.40, 1.60, 1.80; the remainder of the 5 mL solution consisted of 4 N $NaNO_3$. Each vial thus contained 4 N nitrate ion to give a high, approximately constant ionic strength (4.0 to 4.3 M). Each 5 mL solution contained 0.025 microcuries ^{65}Zn initially, and the solutions were counted again after overnight equilibration with the beads. The pH of each solution was measured by a Brinkmann pH meter.


Copper (II) Ion Analysis

Each of six vials contained a given copper concentration in ten milliliters of solution and 1 meq acid sites on the beads. An amount of copper solution (0.3 N $Cu(NO_3)_2$) was used to give Cu:acid equivalent ratios of 0.10, 0.15, 0.30, 0.50, 1.00, 1.50; the remainder of the 10 mL solution consisted of either distilled water or 0.01 N HNO_3 . No attempt was made to maintain a constant ionic strength in each solution (0.015 to 0.23 M). After overnight equilibration, copper ion concentrations were established by atomic absorption analysis using a Varian AA-1475 series atomic absorption spectrophotometer.

RESULTS AND DISCUSSION

The use of phosphinic acids in solvent extraction studies is well documented (21,22). Though less acidic than comparable phosphoric acids, they display a larger uranium extraction

coefficient (18) and can be expected to be more hydrolytically stable. We decided to study the synthesis and application of polystyrene-substituted phosphinic acids; the synthesis of styrenic phosphonic acids has been described (23). The phosphinic acids form the polymeric analogues of our work on liquid phosphinic acids (24). The synthesis proceeds through a phosphinyl dichloride intermediate utilizing a Friedel-Crafts catalyst. Friedel-Crafts reactions are employed in the synthesis of chloromethylated polystyrene precursors to anion exchange resins (25); it is known that this reaction results in not only chloromethylation of the phenyl rings but also in the formation of methylene bridges between the phenyl rings to yield what has been termed secondary crosslinking (26). Given this precedent, we anticipated the simultaneous formation of phosphinic acid/phosphine oxide moieties onto the polystyrene support via the following reaction:

The tautomeric equilibrium has been found to lie well to the right by Williams and Hamilton (27). It is thus reasonable to expect simultaneous metal ion exchange and coordination from the polymeric extractant with a synergistic interaction under favorable circumstances (18). A substantiation of this hypothesis was sought by wet chemical techniques and a metal ion extraction study; spectroscopic techniques are currently being evaluated.

The functionalized support is predicted to have two distinct types of hydrogens not bonded to a carbon atom: an acidic H attached to the oxygen and a non-acidic H attached to the

phosphorus. The acidic H was determined by ion exchange with Na^+ and subsequent titration with 0.1 N NaOH to give the cation exchange capacity (CEC). The non-acidic H was determined by replacement with the iodide ion and back-titration of excess I_3^- with sodium thiosulfate (20) to give a total capacity from which phosphine oxide capacity (POC) was calculated by difference. Non-interference from the acidic H was established by control experiments with pure di(*n*-octyl)phosphinic acid. Our results are summarized in Table 1. The capacities indicate that the support with the least extent of initial crosslinking (2% DVB) results in a resin with the highest monosubstitution and least phosphine oxide bridging, due primarily to the concomitant loss in entropy upon bridging. As the matrix becomes tighter (5% to 15% DVB), entropy loss becomes less important, and the extent of bridging monotonically increases at the expense of strong acid capacity.

The CEC:POC ratio is expected to impact the metal ion chelating properties of the resin. Results obtained to date are presented in Table 2 and focus on the 2% DVB resin with its corresponding 1:1 acid/oxide molar ratio.

TABLE 1
Resin Capacity as a Function of DVB Content

Resin % DVB	CEC ^a (meq/g)	POC ^b (meq/g)	Total Capacity (meq/g)	CEC:POC Ratio	Solids ^c Content (%)
2	2.00	2.27	4.38	1:1	26.5
5	1.82	3.03	4.85	3:5	29.1
10	1.41	3.26	4.67	3:7	32.2
15	1.18	3.54	4.72	1:3	31.8

^aCation exchange capacity

^bPhosphine oxide capacity

^cWeight ratio (dry/wet) $\times 100$

TABLE 2.
Metal Ion Extraction by Functionalized 2% DVB Resin

Experiment A:	Vial Number									
	1	2	3	4	5	6	7	8	9	10
R _i (Zn)	0.05	0.10	0.20	0.40	.80	1.0	1.2	1.4	1.6	1.8
(meq Zn) resin	0.0353	0.0669	0.126	0.231	0.406	0.485	0.561	0.641	0.681	0.733
(meq Zn) soln	0.0147	0.0331	0.0735	0.169	0.394	0.515	0.639	0.759	0.919	1.067
solution pH	0.99	0.95	0.91	0.87	0.79	0.77	0.72	0.68	0.65	0.66
% Zn absorbed	70.6	66.8	63.1	57.7	50.7	48.3	46.6	45.6	42.4	40.5
% Resin loaded	3.5	6.7	12.6	23.1	40.6	48.5	56.1	64.1	68.1	73.3
D _{Zn}	25.0	21.0	17.8	14.2	10.7	9.81	9.14	8.78	7.71	7.15
Experiment B:										
R _i (Cu) ^a	0.10	0.15	0.30	0.50	1.0	1.5				
(meq Cu) resin	0.0995	0.1483	0.2808	0.4220	0.5300	0.5300				

(meq Cu) soln	0.0005	0.0017	0.0192	0.0780	0.4700	0.9700
solution pH	1.98	1.75	1.55	1.40	1.33	1.30
% Cu absorbed	99.5	98.8	93.6	84.4	53.0	
% Resin loaded	9.95	14.8	28.1	42.2	63.0	53.0
D _{Cu}	4145	1810	304	112	23.3	11.4

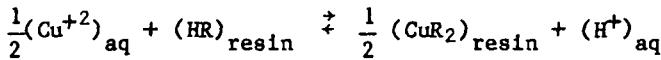
Experiment C:

R ₁ (Cu) ^b	0.14	0.30	0.50	1.0	1.5
(meq Cu) resin	0.1331	0.2640	0.3650	0.5130	0.55550
(meq Cu) soln	0.0069	0.0360	0.1350	0.4870	0.9450
solution pH	1.60	1.45	1.35	1.20	1.15
% Cu absorbed	95.1	88.0	73.0	51.3	
% Resin loaded	13.3	26.4	36.5	51.3	55.5
D _{Cu}	401	153	56.2	21.8	12.2

^a Cu(NO₃)₂ solution made up with distilled water

^b Cu(NO₃)₂ solution made up with 0.01 N HNO₃

The zinc extraction studies were carried out over a range of initial ratio values, R_i , where


$$R_i = (\text{meq } M^{2+} \text{ initially in solution}) / (\text{meq acid sites in the resin}).$$

R_i was varied from 0.05 to 1.8. A constant level of 1 meq acid sites was utilized against a variable level of $\text{Zn}(\text{NO}_3)_2$ in 4 N NaNO_3 with 5 mL total volume of solution; a constant background of 4 N nitrate ion was thus present, independent of the zinc content, allowing for nearly constant ionic strength. The extent of zinc extraction by the resin was followed by the decrease in aqueous phase ^{65}Zn activity from an initial level of 0.025 microcuries per 5 mL. The equilibrium pH of each solution was also recorded. A control run consisting of 0.50 g unfunctionalized polystyrene and an initial concentration of 1.0 meq Zn^{2+} was found to remain at 1.0 meq Zn^{2+} in solution regardless of the equilibration time. The % M^{2+} absorbed onto the resin and remaining in solution and a modified distribution coefficient, $D_{\text{M}}^{2+} = \text{meq } M^{2+} \cdot \text{g}^{-1} \text{ resin} / \text{meq } M^{2+} \cdot \text{mL}^{-1} \text{ sol.}$, is reported in Table 2. In order to determine the validity of using this ratio as the distribution coefficient, the relationship of $\log [M]_{\text{resin}}$ to $\log [M]_{\text{aq}}$ was examined. A linear regression analysis of $\log[(\text{meq Zn})_{\text{beads}} / \text{g beads}]$ vs $(\log[(\text{meq Zn})_{\text{soln}} / \text{mL soln}] + 2 \text{ pH})$ for loadings up to 1:1 yields a line with slope 1.02, which indicates that the same extent of zinc aggregation (probably monomeric) occurs in both the resin and solution.

The zinc data indicate that there was 70% extraction of Zn^{2+} at low initial zinc, decreasing to 48% at an initial equivalent ratio, while the loading increased as excess Zn^{2+} was added to the system to 73% loading at the highest ratio tested. While we have not found previous work on styrenic phosphinic acids, there has been a cation exchange study on styrenic phosphonic acids which is comparable to ours: Bogoczek and Surowiec (28) found

that their macroporous resin extracted 22% of the Zn^{2+} at a solution pH of 5.59 and a zinc to total available resin acid ratio (R_f) of 0.5. We can compare this with a value interpolated from Table 2 of 56% extraction at pH 0.85. At pH 5.59 extraction in our experiment should have been 100%, since the distribution coefficient for Zn would be 10^4 higher at that pH.

Data from the Cu(II) study was handled in a similar manner. The R_f values ranged from 0.10 to 1.5. The difference in the two copper runs is the nature of the solutions: the copper nitrate was dissolved in pure water in the first case (ionic strength 0.015 to 0.23 M) and in 0.01 N HNO_3 in the second case (ionic strength 0.02 to 0.23 M). The results show a very high level of extraction for R_f values up to 0.5. At a 1:1 initial ratio, the resin absorbed \approx 50% of the metal ion in solution for copper, as it did for zinc. The exchange constant, K_{ex} , for copper, shown in the equation below,

$$K_{ex} = [(CuR_2)_{resin}]^{\frac{1}{2}}[(H^+)_{aq}] / [(Cu^{+2})_{aq}]^{\frac{1}{2}}[(HR)_{resin}]$$

is calculated to be 0.34 ± 0.01 for the first case and 0.28 ± 0.01 for the second case. In reference 28 the phosphonic acid resin was reported to extract 25% of the Cu^{2+} at a solution pH of 4.86 and a copper to total available resin acid ratio of 0.4. Again, our interpolated values of 89% extraction at pH 1.5 and 81% at pH 1.4 indicate a much greater extracting capability for the phosphinic acid/phosphine oxide bifunctional resin.

CONCLUSION

The high affinity of our resin for the metal ions tested is evidence suggesting a cooperative interaction between the phosphinic acid and phosphine oxide moieties which may be

synergistic. It is reasonable to suspect that the phosphine oxide groups are increasing the extent of metal ion extraction by replacing the water in the metal coordination sphere (29). We will be publishing a thorough account of our metal ion extraction studies shortly (30).

Experiments currently in progress aim to test the hypothesis of polymer-supported synergistic extraction. Phosphorus nmr studies will provide spectroscopic evidence for the existence of two distinct phosphorus groups within the bead. We have also synthesized a polymeric extractant which is almost pure phosphine oxide in order to determine the importance of the phosphinic acid groups and will be reporting its extracting capabilities in due course.

ACKNOWLEDGMENTS

We would like to thank Mr. Marc A. Strand (UT) and Mr. G. N. Case (ORNL) for their assistance. Additionally, we have benefited from discussions with Prof. George K. Schweitzer who, along with Donna T. Dixon, contributed the copper results.

REFERENCES

1. Proc. Internat. Cong. Solvent Extrac. Chem., D. Dyrssen, J. O. Liljenzin, and J. Rydberg, ed., North Holland Publishing Co. (1967).
2. Separation Science and Technology, 16(9), 971-1298 (1981).
3. K. B. Brown and C. F. Coleman, Prog. Nucl. Energy, ser. III, 2 (1958).
4. S. F. March, J. E. Alarid, C. F. Hammond, M. J. McLeod, F. R. Roensch, and J. E. Rein, Los Alamos Sci. Lab. Report LA-7083 (1978); J. S. Fritz and E. M. Moyers, Talanta, 23, 590 (1976).
5. For an excellent literature review through 1965, see E. Blasius and B. Brozio, in *Chelates in Analytical Chemistry*,

I, H. A. Flaschka and A. J. Barnard, Jr., ed., Dekker (1967).

6. W. A. Klyatschko, Dokl. Akad. Nauk, SSSR, 81, 235 (1951).
7. E. Blasius and B. Brozio, J. Chromatog., 18, 572 (1965).
8. Dow Chemical Co., Technical Bulletin, Dowex A-1 Chelating Resin.
9. E. Blasius and I. Bock, J. Chromatog., 14, 244 (1964).
10. C. G. Overberger and A. Lebovits, J. Am. Chem. Soc., 77, 3675 (1955).
11. J. H. Parrish, Chem. and Ind. (London), 137 (1956).
12. J. Kennedy, ibid, 378 (1956).
13. C. J. Rodden, Analysis of Essential Nuclear Reactor Materials, U.S. At. Energy Comm., Washington (1964).
14. S. Kobayashi, M. Suzuki, and T. Saegusa, Proc. 1982 IUPAC Macromol. Symp.
15. J. Kennedy and R. V. Davies, Chem. and Ind. (London), 378 (1956).
16. J. Kennedy and G. E. Ficken, J. Appl. Chem., 8, 465 (1958).
17. U.S. Patent 3,843,566 (Oct. 22, 1974); Rohm and Haas Co.
18. C. A. Blake, C. F. Baes, Jr., K. B. Brown, C. F. Coleman, and J. C. White, Proc. 2nd Internat. Conf. Peaceful Uses At. Energy, Geneva, 28, 289 (1958).
19. J. Cuninghame, P. Scargill, and H. Willis, UK AERE Rept. C/M 215 (1956).
20. C. A. Blake, K. B. Brown, and C. F. Coleman, ORNL-1964 (1955).
21. D. F. Peppard, G. W. Mason, and S. Lewey, J. Inorg. Nucl. Chem., 28, 2065 (1965).
22. D. F. Peppard, G. W. Mason, and C. Andrejasich, ibid, 28, 2347 (1966).
23. U.S. Patent 2,764,563 (Sept. 25, 1956), Dow Chemical Co.

24. S. D. Alexandratos, W. J. McDowell, and D. L. Wilson, *in preparation*.
25. K. Pepper, H. Paisely, and M. Young, *J. Chem. Soc.*, 75, 4097 (1953).
26. S. Belfer and R. Gluzman, *J. Appl. Poly. Sci.*, 24, 2147 (1979).
27. R. H. Williams and L. A. Hamilton, *J. Am. Chem. Soc.*, 75, 5418 (1952).
28. R. Bogoczek and J. Surowiec, *J. Appl. Poly. Sci.*, 26, 4161 (1981).
29. G. R. Choppin, *Sep. Sci. Technol.*, 16(9), 1113 (1981).
30. S. D. Alexandratos, D. Dixon, M. A. Strand and G. K. Schweitzer, *in preparation*.